Find the sum to indicated number of terms in each of the geometric progressions in $\left.1,-a, a^{2},-a^{3}, \ldots n \text { terms (if } a \neq-1\right)$
The given $G.P.$ is $1,-a, a^{2},-a^{3} \ldots \ldots$
Here, first term $=a_{1}=1$
Common ratio $=r=-a$
$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$
$\therefore S_{n}=\frac{1\left[1-(-a)^{n}\right]}{1-(-a)}=\frac{\left[1-(-a)^{n}\right]}{1+a}$
The value of $0.\mathop {234}\limits^{\,\,\, \bullet \,\, \bullet } $ is
Let $A _{1}, A _{2}, A _{3}, \ldots \ldots$ be an increasing geometric progression of positive real numbers. If $A _{1} A _{3} A _{5} A _{7}=\frac{1}{1296}$ and $A _{2}+ A _{4}=\frac{7}{36}$, then, the value of $A _{6}+ A _{8}+ A _{10}$ is equal to
How many terms of the $G.P.$ $3, \frac{3}{2}, \frac{3}{4}, \ldots$ are needed to give the sum $\frac{3069}{512} ?$
The sum of $3$ numbers in geometric progression is $38$ and their product is $1728$. The middle number is
Suppose four distinct positive numbers $a_1, a_2, a_3, a_4$ are in $G.P.$ Let $b_1=a_1, b_2=b_1+a_2, b_3=b_2+a_3$ and $b_4=b_3+a_4$.
$STATEMENT-1$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are neither in $A.P$. nor in $G.P.$ and
$STATEMENT-2$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are in $H.P.$